POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Selected topics in machine learning [S2AiR2-RiSA>WZUM]

Course			
Field of study Automatic Control and Robotics		Year/Semester 1/1	
Area of study (specialization) Autonomous Robots and Systems		Profile of study general academic	5
Level of study second-cycle		Course offered in Polish	
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 30	Laboratory classe 30	es	Other 0
Tutorials 0	Projects/seminars 0	5	
Number of credit points 4,00			
Coordinators dr inż. Marek Kraft marek.kraft@put.poznan.pl		Lecturers	

Prerequisites

Knowledge: A student beginning this subject should have basic knowledge of mathematics - including, mainly, matrix calculation, knowledge of elements of mathematical logic, basics of mathematical analysis and probabilistics. Skills: He or she should have the ability to operate a PC and implement simple algorithms and programming tasks. Additionally, the ability to obtain information from indicated sources is essential.

Course objective

The aim of this course is to learn the theoretical basis and characteristics of selected machine learning algorithms and related issues. After completing the training, the student should be able to select an algorithm or a set of algorithms that make up a complete machine learning system and implement and test such a system on their own.

Course-related learning outcomes

Knowledge:

Skills:

Social competences:

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture - final credit test carried out on Moodle plaftorm. Laboratories - credit project and final practical programming test.

Programme content

Lecture:

Definition of machine learning and differences between machine learning and traditional programming. Supervised, unsupervised machine learning, reinforcement learning.

Evaluation of machine learning methods - measurements and metrics.

The role of features in machine learning.

Presentation of machine learning algorithms, their operating principles and characteristics: Bayesian classifier, decision trees, random forest, carrier vector machines, clustering, neural networks. Classifier ensembles - boosting and bagging.

Reinforncement learning- algorithms and applications.

Sample applications: time series analysis, tabular data analysis, predictive analysis. Laboratories:

Familiarization with scikit-learn and TensorFlow libraries. Implementation of selected algorithms with the use of the library, performance evaluation and graphical presentation of the output of algorithms in practical applications.

Course topics

The course topics include a presentation of the basic concepts of machine learning and a basic knowledge of algorithms, metrics and practical applications of machine learning methods.

Teaching methods

Lectures with multimedia presentations, additionally uploaded to a streaming service to be played later. Laboratory classes covering the implementation and testing of selected algorithms for image and video processing using Python language and solving selected practical problems.

Bibliography

Basic:

1. Sebastian Raschka, Vahid Mirjalili, Python. Uczenie maszynowe. Helion, 2019

2. Supplementary course materials posted on Moodle

Additional:

Selected scientific papers related to the course.

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	60	2,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	40	1,50